How do you add #\frac { 1} { x + 1} + \frac { 2} { x - 1}#?
1 Answer
Feb 18, 2017
Explanation:
Before we can add 2 fractions we require them to have a
#color(blue)"common denominator"# To achieve this multiply the numerator/denominator of each fraction by the denominator of the other fraction.
#rArr1/color(blue)(x+1)+2/color(red)(x-1)#
#=1/color(blue)(x+1)xxcolor(red)(x-1)/color(red)(x-1)+2/color(red)(x-1)xxcolor(blue)(x+1)/color(blue)(x+1)#
#=(x-1)/((x+1)(x-1))+(2(x+1))/((x+1)(x-1))# Now the fractions have a common denominator we can add the numerators while leaving the common denominator.
#=(x-1+2x+2)/((x+1)(x-1))#
#=(3x+1)/((x+1)(x-1))#