How do you calculate #int_-1^1x^2dx# ?

#int_-1^1x^2dx#

1 Answer
Mar 16, 2018

#2/3#

Explanation:

We use the theorem:
If a function f is continous and even on #[-a.a],# then #int_-a^af(x)dx=2int_0^af(x)dx,where,ainR^+#
Here,#f(x)=x^2andf(-x)=(-x)^2=x^2=f(x)=>f# is even function
#I=int_-1^1x^2dx=2int_0^1x^2dx=2[x^3/3]_0^1=2[1/3-0]=2/3#
OR

#I=int_-1^1x^2dx=[x^3/3]_-1^1=[(1)^3/3-(-1)^3/3]=[1/3+1/3]=[1/3-(-1)/3]=1/3+1/3=2/3#