How do you combine like terms in #4p ^ { 4} + 7p ^ { 2} - 3p ^ { 3} - 8- 3p ^ { 2} - 2p ^ { 4} - 8- 3p ^ { 2} - 2p ^ { 4}#?

2 Answers
Aug 22, 2017

#4p^4 +7p^2-3p^3-8 -3p^2 -2p^4 -8-3p^2 -2p^4#

#=4color(magenta)(p^4) +7color(blue)(p^2)-3color(lime)(p^3)color(darkorange)(-8) -3color(blue)(p^2) -2color(magenta)(p^4) color(darkorange)(-8)-3color(blue)(p^2) -2color(magenta)(p^4)#

#=color(lime)(-3p^3) color(blue)(+p^2) color(darkorange)(-16)#

Explanation:

All of the algebraic terms have the variable #p#, but the indices are different. Find all of the terms which have the same power of #p#.

#4color(magenta)(p^4) +7color(blue)(p^2)-3color(lime)(p^3)color(darkorange)(-8) -3color(blue)(p^2) -2color(magenta)(p^4) color(darkorange)(-8)-3color(blue)(p^2) -2color(magenta)(p^4)#

Collect all the like terms together.

#=color(magenta)(4p^4-2p^4-2p^4) color(lime)(-3p^3) color(blue)(+7p^2-3p^2-3p^2) color(darkorange)(-8-8)#

Add the co-efficients but keep the powers the same.

#=color(magenta)(0p^4) color(lime)(-3p^3) color(blue)(+p^2) color(darkorange)(-16)#

Aug 22, 2017

See a solution process below:

Explanation:

First, group the like terms:

#4p^4 - 2p^4 - 2p^4 - 3p^3 + 7p^2 - 3p^2 - 3p^2 - 8 - 8#

Now, combine like terms:

#(4 - 2 - 2)p^4 - 3p^3 + (7 - 3 - 3)p^2 + (-8 - 8)#

#0p^4 - 3p^3 + 1p^2 + (-16)#

#-3p^3 + p^2 - 16#