How do you complete the square to write in vertex form? #f(x)=-3x^2+4x+2#

1 Answer
Feb 16, 2018

Vertex is at #2/3,10/3# and vertex form of equation is
#f(x) = -3(x-2/3)^2 +10/3 #

Explanation:

#f(x) = -3x^2+4x+2 or f(x) = -3(x^2-4/3x)+2 # or

#f(x) = -3{x^2-4/3x +(2/3)^2} +3*4/9+2 # or

#f(x) = -3{x-(2/3)}^2 +10/3 #

Vertex is at #2/3,10/3# and vertex form of equation is

#f(x) = -3(x-2/3)^2 +10/3 #

graph{-3x^2+4x+2 [-10, 10, -5, 5]}