How do you condense #log_4z-log_4y#?

2 Answers
Apr 7, 2018

Answer:

#color(blue)(log_4(z/y)#

Explanation:

By the laws of logarithms:

#log_c(a/b)=log_c(a)-log_c(b)#

#:.#

#log_4z-log_4y=log_4(z/y)#

#color(blue)(log_4(z/y)#

Apr 7, 2018

Answer:

#log_4(z/y)#

Explanation:

#"using the "color(blue)"law of logarithms"#

#•color(white)(x)loga-logb=log(a/b)#

#rArrlog_4z-log_4y=log_4(z/y)#