How do you determine all values of c that satisfy the mean value theorem on the interval [-1,1] for #f(x) = 3x^5+5x^3+15x #?

1 Answer
Oct 23, 2016

There are two values #c=+-0.62#

Explanation:

On the interval [-1,1], the function #f(x)# is defined and continuous, and differentiable on the interval [-1,1] as it is a polynomial function. So we can apply the mean value theorem.

There is value #c ∈ [-1,1]# such that
#f'(c)=(f(1)-f(-1))/(1-(-1))#

Let's determine #f(1)=3+5+15=23#
And #f(-1)=-3-5-15=-23#

So #f'(c)=(23--23)/2=46/2=23#

Let's calculate #f'(x)=15x^4+15x^2+15=15(x^4+x^2+1)#
Then #f'(c)=15(c^4+c^2+1)=23#

#c^4+c^2+1=23/15#
#c^4+c^2-8/15=0#
Rewrite as #15c^4+15c^2-8=0#
let #c^2=y#
#15y^2+15y-8=0#
#Delta = 15^2+4*15*8=705#
So #y=(-15+-sqrt705)/30=(-15+26.6)/30=11.6/30=0.39#

We take only the positive root

Then #c=+-sqrt0.39=+-0.62#

#+-0.62 ∈[-1,1]#