How do you determine if #f(x)=6x-root3x# is an even or odd function?
1 Answer
Apr 10, 2016
This
Explanation:
#f(x)# is an even function if#f(-x) = f(x)# for any#x#
#f(x)# is an odd function if#f(-x) = -f(x)# for any#x#
For any value of
#f(-x) = 6(-x)-root(3)(-x) = -6x+root(3)(x) = -(6x-root(3)(x)) = -f(x)#
So