How do you determine if #f(x)= sin^-1 (x)# is an even or odd function?

1 Answer
Oct 19, 2017

odd.

Explanation:

Consider any odd function:

# y=g(x) #

Then taking its inverse:

# \ \ \ \ \ \ \ \ \ \ x = g^(-1)(y) #
# :. -x = -g^(-1)(y) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ # (multiplying by #-1#) ..... [A]

Now as #g# is odd so we have:

# \ \ \ \ \ g(-x) = -g(x) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ # (definition of odd fn)

# :. g^(-1)(g(-x)) = g^(-1)(-g(x)) \ # (taking inverses)

# :. -x = g^(-1)(-g(x)) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ # (defn of inverse)

# :. -x = g^(-1)(x) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ # (using [A])

Hence, #g^(-1)(x)# is an odd function.

Hence the inverse of an odd function is itself an odd function. We kn ow that #sinx# is an odd function and hence its inverse #sin^(-1)x# is also an odd function.

We can confirm this graphically:

graph{sinx [-5, 5, -5, 5]}

graph{arcsin(x) [-5, 5, -5, 5]}