How do you determine if the improper integral converges or diverges #int (e^x)/(e^2x + 1) dx# from 0 to infinity?

1 Answer
Jan 30, 2018

The integral converges, and:

# int_0^oo \ (e^x)/(e^(2x)+1) \ dx = pi/4 #

Explanation:

Assuming a correction, let us first find:

# I = int \ (e^x)/(e^(2x)+1) \ dx #

The utilising a substitution if #u=e^x => (du)/dx=e^x # yields:

# I = int \ (1)/(u^2+1) \ du #

Which is a standard integral, and so integrating:

# I = arctan (u) + C #

And then reversing the earlier substitution:

# I = arctan (e^x) + C #

If we look at the graph of the function, it would appear as if the bounded area is finite:

graph{(e^x)/(e^(2x)+1) [-10, 10, -2, 2]}

So let us test this prediction analytically. Consider the improper definite integral:

# J = int_0^oo \ (e^x)/(e^(2x)+1) \ dx #

# \ \ = lim_(n rarr oo) [arctan (e^x)]_0^n#

# \ \ = lim_(n rarr oo) (arctan (e^n)) -arctan (e^0)#

Now, as #x rarr oo => e^x rarr oo#, thus:

# J = lim_(n rarr oo) (arctan n) - arctan (1)#

# \ \ = pi/2-pi/4#

# \ \ = pi/4#