How do you determine if #x-5# is a factor of #2x^3-4x^2-7x-10#?

1 Answer
May 2, 2017

I think it has to do with the Factor Theorem.

Explanation:

The Factor Theorem states: When a divisor is an exact factor of #f(x)#, then the remainder after division will be 0.

ie. #color(magenta)(f(a) = 0 hArr x - a)# is a factor of #color(cyan)f(x)#

So, let #color(blue)(f(x) = 2x^3 - 4x^2 - 7x -10)#

Then, you equate #color(purple)(x-5 = 0# #color(purple)(rArr x=5)#

Next, sub in #color(red)(x=5)# into the function #color(aqua)(f(x))#

#color(brown)(f(5) = 2(5)^3 - 4(5)^2 -7(5) - 10#
#color(pink)(f(5) = 250 - 100 -35 - 10)#
#color(maroon)(f(5) = 105)#

Since #color(lavender)(f(5)!=0)#

#x-5# is not a factor of #color(orange)(2x^3 - 4x^2 - 7x -10)#

Another method will be using the Long Division method.

But I don't know how to type it properly here lol.