How do you determine the binomial factors of #x^3+3x^2+3x+1#?
1 Answer
Explanation:
Using the rational root theorem gives:
#p = 1, q=1# All values of
#+-p/q# are#-1# and#1# .
Now, plug in each value to the polynomial. By the remainder theorem, if the output is zero, the input must be a root.
#(-1)^3+3(-1)^2+3(-1)+1=-1+3-3+1 = 0#
#therefore# there is a root at#x = -1#
#(1)^3+3(1)^2+3(1)+1 = 1+3+3+1=8#
#therefore# there is NOT a root at#x=1#
Factors of the polynomial:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Now, divide the polynomial by
#(x^3+3x^2+3x+1)/(x+1) = (x^3+x^2+x^2+x+x^2+x+x+1)/(x+1)#
#= ((x^3+x^2)+(x^2+x)+(x^2+x)+(x+1))/(x+1)#
#= (x^2 + x + x + 1)#
#= x^2+2x+1#
You could do the same process with this new polynomial, or you could recognize it as a perfect square.
Either way, factoring this polynomial results in
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
So the final answer is