How do you determine the binomial factors of #x^3-x^2-49x+49#?
1 Answer
The binomial factors of
#(x^2-49)# ,#(x-1)# ,#(x-7)# ,#(x+7)#
Explanation:
The given cubic factors by grouping:
#x^3-x^2-49x+49 = (x^3-x^2)-(49x-49)#
#color(white)(x^3-x^2-49x+49) = x^2(x-1)-49(x-1)#
#color(white)(x^3-x^2-49x+49) = (x^2-49)(x-1)#
Note that both
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
Hence we find:
#x^2-49 = x^2-7^2 = (x-7)(x+7)#
So
Multiplying either of these by
#(x-7)(x-1) = x^2-8x+7#
#(x+7)(x-1) = x^2+6x-7#
The complete list of polynomial factors of
#x^3-x^2-49x+49#
#x^2-49#
#x^2-8x+7#
#x^2+6-7#
#x-7#
#x+7#
#x-1#
#1#