How do you determine whether the sequence #a_n=(n!+2)/((n+1)!+1)# converges, if so how do you find the limit?
1 Answer
Jun 18, 2017
The sequence
Explanation:
Let:
#a_n = (n!+2)/((n+1)!+1)#
#color(white)(a_n) = (n!+2)/((n+1)n!+1)#
#color(white)(a_n) = (1+2/(n!))/(n+1+1/(n!))#
As
#2/(n!)->0#
#1/(n!)->0#
So:
#a_n->(1+0)/(oo+1+0) = 0#
So the sequence
How about the sum?
#a_n = (n!+2)/((n+1)!+1) > (n!)/((n+1)!+1) = 1/(n+1+1/(n!)) >= 1/(n+2)#
So:
#sum_(n=1)^oo a_n >= sum_(n=1)^oo 1/(n+2) = sum_(n=3)^oo 1/n#
which diverges, since the harmonic series