How do you differentiate #arctan(1/x)#?
1 Answer
Nov 9, 2016
# d/dx arctan(1/x) = -1/(1+x^2) #
Explanation:
We can write
# :. 1/tany=x #
# :. coty=x # ..... [1]
We can then differentiate implicitly:
# -csc^2y dy/dx= 1 #
# dy/dx= -1/csc^2y #
Using the identity
# dy/dx= -1/(1+cot^2y) #
# dy/dx= -1/(1+x^2) # (from [1])