How do you differentiate # f(x) =2sin2x + cos^2x #?

1 Answer
May 20, 2016

#4cos2x-sin2x#

Explanation:

Both terms here can be differentiated using the #color(blue)"chain rule"#

#d/dx[f(g(x))]=f'(g(x)).g'(x)...........(A)#
#"-----------------------------------------------------"#

Term 1

f(g(x)) = 2sin2x#rArrf'(g(x))=2cos2x#

g(x) = 2x#rArrg'(x)=2#

Substitute these values into (A)

#rArrd/dx(2sin2x)=2cos2x.2=4cos2x#
#"--------------------------------------------------------"#
Term 2

#f(g(x))=cos^2x=(cosx)^2#
#rArrf'(g(x))=2(cosx)^1=2cosx#

#g(x)=cosxrArrg'(x)=-sinx#

Substitute these values into (A)

#rArrd/dx(cos^2x)=2cosx.(-sinx)=-2cosxsinx#
#"-----------------------------------------------------------------------"#

using the trig.identity#color(red)(|bar(ul(color(white)(a/a)color(black)(sin2x=2sinxcosx)color(white)(a/a)|)))#

#rArrd/dx(cos^2x)=-sin2x#

Now the whole can be put together

#f(x)=2sin2x+cos^2x#

#rArrf'(x)=4cos2x-sin2x#