How do you differentiate # f(x) =2sin2x + cos^2x #?
1 Answer
Explanation:
Both terms here can be differentiated using the
#color(blue)"chain rule"#
#d/dx[f(g(x))]=f'(g(x)).g'(x)...........(A)#
#"-----------------------------------------------------"# Term 1
f(g(x)) = 2sin2x
#rArrf'(g(x))=2cos2x# g(x) = 2x
#rArrg'(x)=2# Substitute these values into (A)
#rArrd/dx(2sin2x)=2cos2x.2=4cos2x#
#"--------------------------------------------------------"#
Term 2
#f(g(x))=cos^2x=(cosx)^2#
#rArrf'(g(x))=2(cosx)^1=2cosx#
#g(x)=cosxrArrg'(x)=-sinx# Substitute these values into (A)
#rArrd/dx(cos^2x)=2cosx.(-sinx)=-2cosxsinx#
#"-----------------------------------------------------------------------"# using the trig.identity
#color(red)(|bar(ul(color(white)(a/a)color(black)(sin2x=2sinxcosx)color(white)(a/a)|)))#
Now the whole can be put together
#f(x)=2sin2x+cos^2x#
#rArrf'(x)=4cos2x-sin2x#