How do you differentiate # f(x) =cos(3x -2)-tan(4x+3) #?
1 Answer
Feb 28, 2016
Explanation:
differentiate using the
#color(blue) " chain rule "#
#d/dx[f(g(x))] = f'(g(x)).g'(x) # and the standard derivatives :
#d/dx(cosx) = -sinx " and " d/dx(tanx) = sec^2x #
#f'(x) = -sin(3x-2) d/dx(3x-2) - sec^2(4x+3) d/dx(4x+3)#
#= -sin( 3x-2).3 - sec^2(4x+3).4 #