How do you differentiate #f(x)=sin^4 3x-cos^4 3x#?
1 Answer
Two methods are shown below.
Explanation:
Differentiate then simplify
Recall the
so the derivative is
# = 12sin^3(3x)cos(3x) + 12cos^3(3x)sin(3x)#
# = 12sin(3x)cos(3x)underbrace((sin^2(3x) + cos^2(3x)))_(=1)#
# = 12sin(3x)cos(3x)#
Simplify then differentiate
Factor using
# = underbrace((sin^2(3x) + cos^2(3x)))_(=1)(sin^2(3x) - cos^2(3x))#
# = (sin^2(3x) - cos^2(3x))#
Now differentiate using the chain rule as in the other method
# = 6sin(3x)cos(3x) + 6 sin(3x)cos(3x)#
# = 12sin(3x)cos(3x)#