How do you differentiate # f(x) =[(sin x + tan x)/(sin xcos x)]^3 #?

1 Answer

#color(red)(f' (x)=3*sec^3 x*tan x*(1+sec x)^2(1+2*sec x))#

Explanation:

Start from the given #f (x)=[(sin x+ tan x)/(sin x cos x)]^3# and simplify it first

#f(x)=[sin x/(sin x cos x)+tan x/(sin x cos x)]^3#

#f(x)=[cancelsin x/(cancelsin x cos x)+(cancelsin x/cos x)*1/(cancelsin x cos x)]^3#

#f(x)=[1/( cos x)+(1/cos x)*1/(cos x)]^3#

#f(x)=[1/( cos x)+1/cos^2 x]^3#

#f(x)=[sec x+sec^2 x]^3#

At this point we differentiate using the power formula
#d/dx(u^n)=n*u^(n-1)*d/dx(u)#

#f(x)=[sec x+sec^2 x]^3#

#f' (x)=d/dx[sec x+sec^2 x]^3#

#f' (x)=3*[sec x+sec^2 x]^(3-1)*d/dx(sec x+sec^2 x)#

#f' (x)=3*[sec x+sec^2 x]^2*(sec x*tan x+2*(sec x)^(2-1)d/dx(sec x))#

#f' (x)=3*[sec x+sec^2 x]^2*(sec x*tan x+2*sec x*(sec x*tan x))#

#f' (x)=3*[sec x+sec^2 x]^2*(sec x*tan x+2*sec^2 x*tan x)#

#color(red)(f' (x)=3*sec^3 x*tan x*(1+sec x)^2(1+2*sec x))#

God bless...I hope the explanation is useful.