How do you differentiate #f(x)=tan5x^3#?

1 Answer
Dec 5, 2016

#f'(x)=((v(u(x)))'=15x^2sec^2(5x^3)#

Explanation:

Differentiating #f(x)# is determined by applying the chain rule .
#" "#
Let #" "u(x)=5x^3" "and " "v(x)=tanx#
#" "#
Then,
#" "#
#f(x)=v(u(x))#
#" "#
Applying the chain rule for differentiation.
#" "#
#f'(x)=((v(u(x)))'=v'(u(x))xxu'(x)#
#" "#
#u'(x)=15x^2#
#" "#
#v'(x)=sec^2x" "then" "v'(u(x))=sec^2(5x^3)#
#" "#
Therefore,
#" "#
#f'(x)=((v(u(x)))'=v'(u(x))xxu'(x)#
#" "#
#f'(x)=((v(u(x)))'=sec^2(5x^3)xx15x^2#
#" "#
#f'(x)=((v(u(x)))'=15x^2sec^2(5x^3)#