How do you differentiate #f(x)=(x+4x^2)(x^2-3x)# using the product rule?
1 Answer
Jan 9, 2016
Explanation:
The product rule states that for a function
#f'(x)=g'(x)h(x)+h'(x)g(x)#
Thus,
#f'(x)=(x^2-3x)d/dx(x+4x^2)+(x+4x^2)d/dx(x^2-3x)#
These derivatives are simple to find through the power rule:
#d/dx(x+4x^2)=1+8x#
#d/dx(x^2-3x)=2x-3#
Plug these back in.
#f'(x)=(x^2-3x)(1+8x)+(x+4x^2)(2x-3)#
Now, distribute and simplify.
#f'(x)=8x^3-23x^2-3x+8x^3-10x^2-3x#
#f'(x)=16x^3-33x^2-6x#