How do you differentiate #f(x)=x-x^2e^x-xlnx# using the product rule?
1 Answer
Mar 6, 2016
Explanation:
The product rule states that
#d/dx[g(x)h(x)]=g'(x)h(x)+g(x)h'(x)#
When finding
We can find the derivative of each term individually:
#d/dx(x)=1#
#d/dx(-x^2e^x)=e^xd/dx(-x^2)+(-x^2)d/dx(e^x)#
#color(white)l=-2xe^x-x^2e^x#
#d/dx(-xlnx)=lnxd/dx(-x)+(-x)d/dx(lnx)#
#color(white)(ll)=lnx(-1)+(-x)1/x#
#color(white)(ll)=-lnx-1#
Combining all these terms, we see that the function's entire derivative is
#f'(x)=1-2xe^x-x^2e^x-lnx-1#
#f'(x)=-2xe^x-x^2e^x-lnx#