How do you differentiate #f(x)=x(x^3-3) # using the product rule?
1 Answer
Feb 7, 2016
# f'(x) = 4x^3 - 3 #
Explanation:
product rule : if f(x) = g(x).h(x)
then f'(x) = g(x).h'(x) + h(x).g'(x)
using the
#color(blue)(" product rule ")#
# f'(x) = x d/dx(x^3 - 3 ) + (x^3 - 3) d/dx (x) #
# = x (3x^2) + (x^3 - 3 ).1#
#rArr f'(x) = 3x^3 + x^3 - 3 = 4x^3 - 3 #