How do you differentiate # g(x) =4/cosx + 1/ tanx #?
1 Answer
Jan 31, 2016
Explanation:
Assuming you don't know the identities for the derivatives of secant and cotangent:
We can find these derivatives using the quotient rule.
#g'(x)=(cosxd/dx(4)-4d/dx(cosx))/cos^2x+(tanxd/dx(1)-1d/dx(tanx))/tan^2x#
Recall that
#g'(x)=(4sinx)/cos^2x+(-sec^2x)/tan^2x#
#g'(x)=4(sinx/cosx)1/cosx-1/cos^2x(cos^2x/sin^2x)#
#g'(x)=4tanxsecx-csc^2x#
Assuming you already know the identities:
#g(x)=4secx+cotx#
Thus,
#g'(x)=4secxtanx-csc^2x#
since
#d/dx(secx)=secxtanx# and#d/dx(cotx)=-csc^2x#