How do you differentiate #g(x)=cos(10^(2x))#?
1 Answer
Jul 25, 2017
Explanation:
#•color(white)(x)d/dx(a^x)=a^xlna#
#"differentiate using the "color(blue)"chain rule"#
#"given "y=f(g(h(x)))" then"#
#dy/dx=f'(g(h(x))xxg'(h(x))xxh'(x)larr" chain rule"#
#rArrg'(x)=-sin(10^(2x))xxd/dx(10^(2x))#
#color(white)(rArrg'(x))=-sin(10^(2x))xx(10^(2x))ln10xxd/dx(2x)#
#color(white)(rArrg'(x))=-2ln10sin(10^(2x))10^(2x)#