How do you differentiate #g(x) =e^(1-x)sinx# using the product rule?
2 Answers
Mar 10, 2016
Explanation:
Mar 10, 2016
Explanation:
differentiate using the
#color(blue)" Product rule "# If g(x)=f(x).h(x) then g'(x) = f(x).h'(x) + h(x).f'(x)
#"-------------------------------------------------------------"#
f(x) =#e^(1-x) rArr f'(x) = e(1-x) d/dx(1-x) = -e^(1-x)# and h(x)=sinx
#rArr h'(x) = cosx #
#"----------------------------------------------------------------"#
substitute these results into g'(x)
#rArr g'(x) =e^(1-x).cosx + sinx.(-e^(1-x) )# taking out a common factor
#rArr g'(x) = e^(1-x) (cosx - sinx ) #