How do you differentiate #g(x) =(x^2 - 1) (x^2 - 2)^(3/2 # using the product rule?
1 Answer
Nov 11, 2017
Explanation:
#"given "g(x)=f(x)h(x)" then"#
#g'(x)=f(x)h'(x)+h(x)f'(x)larrcolor(blue)"product rule"#
#f(x)=x^2-1rArrf'(x)=2x#
#h(x)=(x^2-2)^(3/2)#
#"differentiate using the "color(blue)"chain rule"#
#rArrh'(x)=3/2(x^2-2)^(1/2)xx2x=3x(x^2-2)^(1/2)#
#rArrg'(x)=3x(x^2-1)(x^2-2)^(1/2)+2x(x^2-2)^(3/2)#
#color(white)(rArrg'(x))=x(x^2-2)^(1/2)[3(x^2-1)+2(x^2-2)]#
#color(white)(rArrg'(x))=x(x^2-2)^(1/2)(5x^2-7)#