How do you differentiate #r=5theta^2sectheta#?
1 Answer
Jan 18, 2017
Explanation:
differentiate using the
#color(blue)"product rule"#
#"Given " r=f(theta).g(theta)" then"#
#color(red)(bar(ul(|color(white)(2/2)color(black)(r'(theta)=f(theta)g'(theta)+g(theta)f'(theta))color(white)(2/2)|)))larr" product rule"# The standard derivative of
#sec(theta)# which should be known is.
#color(red)(bar(ul(|color(white)(2/2)color(black)(d/(d theta)(sec(theta))=sec(theta)tan(theta))color(white)(2/2)|)))#
#"here " f(theta)=5theta^2rArrf'(theta)=10theta#
#"and " g(theta)=secthetarArrg'(theta)=secthetatantheta#
#rArrr'(theta)=5theta^2secthetatantheta+sectheta.10theta#
#=5thetasectheta(tantheta+2)#