How do you differentiate sin^2(2x)?

1 Answer
Jul 23, 2016

2sin4x

Explanation:

differentiate using the color(blue)"chain rule"

color(red)(|bar(ul(color(white)(a/a)color(black)(d/dx(f(g(x)))=f'(g(x))g'(x))color(white)(a/a)|))) ........ (A)

here f(g(x))=sin^2(2x)=(sin2x)^2

rArrf'(g(x))=2sin2x

Note, 2 applications of color(blue)"chain rule" required for g'(x)

g(x)=sin2xrArrg'(x)=cos2x.d/dx(2x)=2cos2x
"------------------------------------------------------------------"
Substitute these values into (A)

2sin2x.2cos2x=4sin2xcos2x

color(orange)"Reminder" color(red)(|bar(ul(color(white)(a/a)color(black)(sin4x=2sin2xcos2x)color(white)(a/a)|)))

rArrd/dx(sin^2(2x))=4sin2xcos2x=2sin4x