How do you differentiate #sin^2(x) cos (x)#?

2 Answers
Oct 2, 2017

#(dy)/(dx)=2sinxcos^2x-sin^3x#

Explanation:

we use the product rule

#y=uv=>#

#(dy)/(dx)=v(du)/(dx)+u(dv)/(dx)#

#y=sin^2xcosx#

#d/(dx)(y)=d/(dx)(sin^2xcosx)#

#(dy)/(dx)=cosxd/(dx)(sin^2x)+sin^2xd/(dx)(cosx)#

#(dy)/(dx)=cosx(2sinxcosx)+sin^2x(-sinx)#

#(dy)/(dx)=2sinxcos^2x-sin^3x#

Oct 2, 2017

#f'(x) = -sin x + 3sin x cos^2 x#

Explanation:

An alternative that doesn't use Product Rule and instead relies upon the Chain Rule comes from rewriting the original function prior to differentiating:

#f(x) = sin^2(x) cos(x) #
#f(x) = (1-cos^2 x)*cos(x) #
#f(x) = cos x - cos^3 x #

Thus:

#f'(x) = -sin x - 3*(cos^2 x) *(-sin x) #
#f'(x) = -sin x + 3sin x cos^2 x#

Even though they look different, both answers are the same. ("Peel off" one #sinx cos^2x# term, rewrite #cos^2x# as #1-sin^2x#, and simplify to see.)