How do you differentiate #sin(arctanx)#?
2 Answers
Explanation:
#"differentiate using the "color(blue)"chain rule"#
#"given "y=f(g(x))" then"#
#dy/dx=f'(g(x))xxg'(x)larr" chain rule"#
#rArrd/dx(sin(arctanx))#
#=cos(arctanx)xxdx(arctanx)#
#=(cos(arctanx))/(1+x^2)#
#=1/(1+x^2)xx1/(sqrt(1+x^2)#
Explanation:
Let,
Now,
Hence,
Using the Quotient Rule for Diffn.,
Here, by the Chain Rule,
Utilising this, in