How do you differentiate #y = (1 + cos^2x) / (1 - cos^2x)#?

2 Answers
Jun 5, 2015

One thing you can do is use some identities so that you can avoid overcomplicating it and having to simplify the results of the quotient rule.

#sin^2x + cos^2x = 1#

so

#1+cos^2x = 1+(1-sin^2x) = 2-sin^2x#
#1-cos^2x = sin^2x#

and so

#(1+cos^2x)/(1-cos^2x) = (2-sin^2x)/(sin^2x) = 2/(sin^2x) - 1#

#= 2csc^2x - 1#

#(df(x))/(dx) = 2[2cscx*-cscxcotx] = -4csc^2xcotx#

An alternate form of this from Wolfram Alpha is:
#-(16cosx)/(3sinx-sin3x)#

but the accepted answer on Wolfram Alpha is the first one, #-4csc^2xcotx#.

Jun 6, 2015

I would rewrite the function:

#y=(1+cos^2x)/(1-cos^2x) = (1+cos^2x)/sin^2x#

#= 1/sin^2x + cos^2x/sin^2x#

#=csc^2x + cot^2x#

Now differentiate using the chain ruloe and the derivatives of #cscx# and #cotx#:

#y' = 2cscx(-cscxcotx) + 2 cotx(-csc^2x)#

#= -2csc^2xcotx-2csc^2xcotx#

#= -4csc^2xcotx#.