How do you differentiate #y=arcsin(3x)/x#?

1 Answer
Jan 15, 2018

#y'=(3x-arcsin(3x)sqrt(1-9x^2))/(x^2sqrt(1-9x^2))#

Explanation:

We will use the quotient rule:

#d/dx[f(x)/g(x)]=y'=(f'(x)*g(x)-g'(x)*f(x))/(g(x))^2#

But before that however, let's find the derivative of #arcsin(3x)#

#--------------------#

Let #y=arcsin(3x)#

Take the sines of both sides

#sin(y)=3x#

Differentiate both sides W.R.T #x#

#dy/dx*cos(y)=3#

Divide #cos(y)# to both sides

#dy/dx=3/cos(y)#

We now must rewrite in terms of #x#

Since , #color(blue)(sin(y)=(3x)/1#

Then, #color(red)(cos(y)=sqrt(1-9x^2)/1=sqrt(1-9x^2)#

#:.dy/dx=(3)/sqrt(1-9x^2)#

#--------------------#

Now finding the derivative:

Let #f(x)=arcsin(3x)# & #g(x)=x#

So #f'(x)=3/sqrt(1-9x^2)# & #g'(x)=1#

Substituting into the quotient rule we get:

#y'=(3/sqrt(1-9x^2)*x-1*arcsin(3x))/(x)^2#

Simplify:

#y'=((3x)/sqrt(1-9x^2)-arcsin(3x))/x^2#

Combine Fractions in the numerator:

#color(blue)((3x)/sqrt(1-9x^2)-arcsin(3x)*(sqrt(1-9x^2)/sqrt(1-9x^2))#

#color(blue)((3x)/sqrt(1-9x^2)-(arcsin(3x)sqrt(1-9x^2))/sqrt(1-9x^2))#

#y'=((3x-arcsin(3x)sqrt(1-9x^2))/sqrt(1-9x^2))/x^2#

Apply the fraction rule for further simplification

#y'=(3x-arcsin(3x)sqrt(1-9x^2))/sqrt(1-9x^2)*1/x^2#

#y'=(3x-arcsin(3x)sqrt(1-9x^2))/(x^2sqrt(1-9x^2))#