How do you differentiate #y=sin^-1(1/x)#?

1 Answer
Oct 27, 2016

# dy/dx=(-1)/(xsqrt(x^2-1)) #

Explanation:

The easiest way is to rewrite #y=sin^-1(1/x)# as # siny=1/x #

# :. siny=x^-1 #

Then, differentiating simplicity gives:

# cosydy/dx=-x^-2 #
# :. dy/dx=(-1)/(x^2cosy) #

And, using the trig odentity #sin^2A+cos^2A-=1# we have
# cosy=sqrt(1-sin^2y) #
# :. cosy=sqrt(1-(1/x)^2) #
# :. cosy=sqrt(x^2/x^2-1/x^2) #
# :. cosy=sqrt((x^2-1)/x^2) #
# :. cosy=1/xsqrt(x^2-1) #

And, so substituting into the derivative above we get;
# :. dy/dx=(-1)/(x^2(1/xsqrt(x^2-1))) #
Hence, # dy/dx=(-1)/(xsqrt(x^2-1)) #