How do you differentiate #y = x^3*2^x#?
1 Answer
Jan 3, 2017
Explanation:
#y = x^3 2^x #
Take Natural logs:
# ln y = ln(x^3 2^x)#
# :. ln y = ln(x^3) + ln(2^x)#
# :. ln y = 3ln(x) + xln(2)#
Differentiate Implicitly:
# 1/y dy/dx= 3/x + ln(2)#
# :. 1/(x^3 2^x) dy/dx= 3/x + ln(2)#
# :. dy/dx= (x^3 2^x){ 3/x + ln(2) }#
# :. dy/dx= 3x^2 2^x + x^3 2^xln(2)#
You could also use the product rule