How do you differentiate #y = x^cos(3x)#?

1 Answer
Oct 26, 2016

# dy/dx= (cos(3x)/x -3sin(3x)lnx)x^cos(3x) #

Explanation:

Take logs of both sides:

# y = x^cos(3x) #
# :. lny = ln(x^cos(3x)) #
# :. lny = cos(3x)lnx #

The LHS can be differentiated simplicity, and the RHS can be differentiated using product rule; # d/dx(uv)=u(dv)/dx+v(du)/dx #

So, we have:
# 1/ydy/dx= cos(3x)d/dxlnx + lnxd/dxcos(3x) #
# :. 1/ydy/dx= cos(3x)1/x + (lnx)(-sin(3x))(3) #
# :. 1/ydy/dx= cos(3x)/x -3sin(3x)lnx #
# :. dy/dx= (cos(3x)/x -3sin(3x)lnx)y #
# :. dy/dx= (cos(3x)/x -3sin(3x)lnx)x^cos(3x) #