How do you divide #20m ^ { 5} n ^ { 8} 0^ { 4} \div 2m ^ { 2} n ^ { 6} o^ { 3}#?

1 Answer
Jul 27, 2017

See a solution process below:

(Assuming #o^4# and #o^3# are the letter #o# and not the number #0#)

Explanation:

First, rewrite the expression as:

#(20m^5n^8o^4)/(2m^2n^6o^3) => 20/2(m^5/m^2)(n^8/n^6)(o^4/o^3) =>#

#10(m^5/m^2)(n^8/n^6)(o^4/o^3)#

Next, use this rule of exponents to divide the #m#, #n# and #o# terms:

#x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))#

#10(m^color(red)(5)/m^color(blue)(2))(n^color(red)(8)/n^color(blue)(6))(o^color(red)(4)/o^color(blue)(3)) => 10m^(color(red)(5)-color(blue)(2))n^(color(red)(8)-color(blue)(6))o^(color(red)(4)-color(blue)(3)) =>#

#10m^3n^2o^1#

Now, use this rule of exponents to simplify the #o# term:

#a^color(red)(1) = a#

#10m^3n^2o^color(red)(1) =>#

#10m^3n^2o#