How do you divide #(26u ^ { 7} z ^ { 7} - 15u ^ { 2} z ^ { 7} ) \div ( - 3u ^ { 3} z ^ { 4} #)?

2 Answers
Jun 15, 2018

#(z^3(15-26u^5))/(3u)#

Explanation:

Writing your term in the form
#-(u^2z^7(26u^5-15))/(3z^4u^3)#
and this is

#((15-26u^5)z^3)/(3*u)#

Jun 15, 2018

#=(-26u^4z^3)/3 +(5z^3)/u#

Explanation:

Divide each of the terms in the first bracket by #-3u^3z^4#

#(26u^7z^7-15u^2z^7)/(-3u^3z^4)#

#= (27u^7z^7)/(-3u^3z^4) -(15u^2z^7)/(-3u^3z^4)#

#=(-26u^4z^3)/3 +(5z^3)/u#

(divide the numbers and subtract the indices)