How do you divide #2x ^ { 3} + 4x ^ { 2} + 5# by #x-3#?
1 Answer
Jul 4, 2017
Explanation:
#"one way is to use the divisor as a factor in the numerator"#
#"consider the numerator"#
#color(red)(2x^2)(x-3)color(magenta)(+6x^2)+4x^2+5#
#=color(red)(2x^2)(x-3)color(red)(+10x)(x-3)color(magenta)(+30x)+5#
#=color(red)(2x^2)(x-3)color(red)(+10x)(x-3)color(red)(+30)(x-3)color(magenta)(+90)+5#
#=color(red)(2x^2)(x-3)color(red)(+10x)(x-3)color(red)(+30)(x-3)+95#
#"quotient "=color(red)(2x^2+10x+30)," remainder "=95#
#rArr(2x^3+4x^2+5)/(x-3)#
#=2x^2+10x+30+95/(x-3)#