How do you divide #(3r^3+34r^2+89r+75)div(r+8)# using synthetic division?
1 Answer
Explanation:
Here,
We take coefficients of
#(-8) |# #color(red)3color(white)(.....)34color(white)(.....)89color(white)(....)75#
#ulcolor(white)((....2))|# #ul(color(red)0color(white)(..................................)#
#color(white)(..........)color(red)3#
#(-8) |# #3color(white)(.....)color(blue)(34)color(white)(.....)89color(white)(....)75#
#ulcolor(white)((....2))|# #ul(0color(white)(....)color(blue)(-24)color(white)(......................)#
#color(white)(..........)3color(white)(.....)color(blue)(10color(white)(.....20color(white)(.........)ul|0|#
Again repeat the process :
#(-8) |# #3color(white)(.......)34color(white)(.....)color(brown)(89)color(white)(....)75#
#ulcolor(white)((....2))|# #ul(0color(white)(...)-24color(white)(..)color(brown)(-80)color(white)(.........10#
#color(white)(..........)3color(white)(.....)10color(white)(........)color(brown)(9)color(white)(.........ul|0|#
Again ,
#(-8) |# #3color(white)(.....)34color(white)(.......)89color(white)(........)color(violet)(75#
#ulcolor(white)((....2))|# #ul(0color(white)(.)-24color(white)(..)-80color(white)(.....)color(violet)(-72#
#color(white)(..........)3color(white)(......)10color(white)(........)9color(white)(.........)color(violet)(ul|3|#
We can see that , quotient polynomial :
Hence ,