How do you divide #(3x ^ { 3} - 35x ^ { 2} + 128x - 140) \div ( x - 5)#?
1 Answer
Jul 1, 2017
Explanation:
#"one way is to use the divisor as a factor in the numerator"#
#"consider the numerator"#
#color(red)(3x^2)(x-5)color(magenta)(+15x^2)-35x^2+128x-140#
#=color(red)(3x^2)(x-5)color(red)(-20x)(x-5)color(magenta)(-100x)+128x-140#
#=color(red)(3x^2)(x-5)color(red)(-20x)(x-5)color(red)(+28)(x-5)color(magenta)(+140)-140#
#=color(red)(3x^2)(x-5)color(red)(-20x)(x-5)color(red)(+28)(x-5)+0#
#"quotient "=color(red)(3x^2-20x+28)," remainder " =0#
#rArr(3x^3-35x^2+128x-140)/(x-5)#
#=(cancel((x-5))(3x^2-20x+28))/cancel((x-5))#
#=3x^2-20x+28#