How do you divide #(5x ^ { 4} + 2x^3 - 9x + 12) \div ( x ^ { 2} - 3x + 4)#?

1 Answer
Jun 4, 2017

The quotient is #5x^2+17x+31# and the remainder is #16x-112#

Explanation:

You perform a long division

#color(white)()##x^2-3x+4##|##color(white)(a)##5x^4+2x^3+0x^2-9x+12##color(white)(aa)##|##5x^2+17x+31#

#color(white)(aaaaaaaaaaaa)##5x^4-15x^3+20x^2#

#color(white)(aaaaaaaaaaaaa)##0+17x^3-20x^2-9x#

#color(white)(aaaaaaaaaaaaaaaa)##17x^3-51x^2+68x#

#color(white)(aaaaaaaaaaaaaaaaa)##-0+31x^2-77x+12#

#color(white)(aaaaaaaaaaaaaaaaaaaaa)##+31x^2-93x+124#

#color(white)(aaaaaaaaaaaaaaaaaaaaaaaa)##-0+16x-112#

Therefore,

#(5x^4+2x^3+0x^2-9x+12)/(x^2-3x+4)=(5x^2+17x+31)+(16x-112)/(x^2-3x+4)#