How do you divide #(6b ^ { 3} + 28b ^ { 2} + 20b + 19) \div ( b + 4)#?
1 Answer
Jul 15, 2017
Explanation:
#"one way is to use the divisor as a factor in the numerator"#
#"consider the numerator"#
#color(red)(6b^2)(b+4)color(magenta)(-24b^2)+28b^2+20b+19#
#=color(red)(6b^2)(b+4)color(red)(+4b)(b+4)color(magenta)(-16b)+20b+19#
#=color(red)(6b^2)(b+4)color(red)(+4b)(b+4)color(red)(+4)(b+4)color(magenta)(-16)+19#
#=color(red)(6b^2)(b+4)color(red)(+4b)(b+4)color(red)(+4)(b+4)+3#
#"quotient "=color(red)(6b^2+4b+4)," remainder "=3#
#rArr(6b^3+28b^2+20b+19)/(b+4)#
#=6b^2+4b+4+3/(b+4)#