How do you divide #6x^3+5x^2-4x+4# by #2x+3#?
1 Answer
Aug 10, 2018
Explanation:
We can long divide the coefficients...
This tells us that
Equivalently, we can split off multiples of
#6x^3+5x^2-4x+4#
#=6x^3+9x^2-4x^2-6x+2x+3+1#
#=3x^2(2x+3)-2x(2x+3)+1(2x+3)+1#
#=(3x^2-2x+1)(2x+3)+1#
So:
#(6x^3+5x^2-4x+4)/(2x+3) = 3x^2-2x+1+1/(2x+3)#