How do you divide #(9x ^ { 3} + 3x ^ { 2} + 6x - 18) \div ( 3x - 3)#?
1 Answer
Aug 8, 2017
Explanation:
#"one way is to use the divisor as a factor in the numerator"#
#"consider the numerator"#
#color(red)(3x^2)(3x-3)color(magenta)(+9x^2)+3x^2+6x-18#
#=color(red)(3x^2)(3x-3)color(red)(+4x)(3x-3)color(magenta)(+12x)+6x-18#
#=color(red)(3x^2)(3x-3)color(red)(+4x)(3x-3)color(red)(+6)(3x-3)color(magenta)(+18)-18#
#=color(red)(3x^2)(3x-3)color(red)(+4x)(3x-3)color(red)(+6)(3x-3)+0#
#"quotient "=color(red)(3x^2+4x+6)," remainder "=0#
#rArr(cancel((3x-3))(3x^2+4x+6))/cancel((3x-3))=3x^2+4x+6#