First, factor each of the terms is the numerator and denominator and rewrite the expression as:
#((x - 7)(x - 2))/((x + 3)(x + 4)) -: (3x(x - 7))/(4x(x + 4))#
Next, rewrite the expression again as:
#(((x - 7)(x - 2))/((x + 3)(x + 4)))/((3x(x - 7))/(4x(x + 4)))#
Then, use this rule of dividing fractions to divide and simplify:
#(color(red)(a)/color(blue)(b))/(color(green)(c)/color(purple)(d)) = (color(red)(a) xx color(purple)(d))/(color(blue)(b) xx color(green)(c))#
#(color(red)((x - 7)(x - 2))/color(blue)((x + 3)(x + 4)))/(color(green)(3x(x - 7))/color(purple)(4x(x + 4))) => (color(red)((x - 7)(x - 2)) xx color(purple)(4x(x + 4)))/(color(blue)((x + 3)(x + 4)) xx color(green)(3x(x - 7)))#
Next, cancel common terms in the numerator and denominator:
#(color(red)(color(black)(cancel(color(red)((x - 7))))(x - 2)) xx color(purple)(4color(black)(cancel(color(purple)(x)))color(black)(cancel(color(purple)((x + 4))))))/(color(blue)((x + 3)color(black)(cancel(color(blue)((x + 4))))) xx color(green)(3color(black)(cancel(color(green)(x)))color(black)(cancel(color(green)((x - 7)))))) => (4(x - 2))/(3(x + 3))#