First, rewrite this expression as:
#((2z - 14)/49)/((z - 7)/21)#
Then use this rule for dividing fractions as the next step:
#(color(red)(a)/color(blue)(b))/(color(green)(c)/color(purple)(d)) = (color(red)(a) xx color(purple)(d))/(color(blue)(b) xx color(green)(c))#
#(color(red)(2z - 14)/color(blue)(49))/(color(green)(z - 7)/color(purple)(21)) = ((color(red)(2z - 14)) xx color(purple)(21))/(color(blue)(49) xx (color(green)(z - 7))) = (21(2z - 14))/(49(z - 7))#
We can next factor several of the terms:
#(21(2z - 14))/(49(z - 7)) = ((7 xx 3)(2(z - 7)))/((7 xx 7)(z - 7))#
We can then cancel several of the common terms in the numerator and the denominator:
#((color(red)(cancel(color(black)(7))) xx 3)(2color(blue)(cancel(color(black)((z - 7))))))/(((color(red)(cancel(color(black)(7))) xx 7)color(blue)(cancel(color(black)((z - 7)))))# #= (3 xx 2)/7 = 6/7#