How do you divide #\frac { 5p + 3} { 3p ^ { 3} - 3p } \div \frac { 5p + 3} { 9p ^ { 3} - 21p ^ { 2} + 12p }#?

1 Answer

#(3p-4)/(p+1)#

Explanation:

First step, let's take the reciprocal of the right fraction and multiply:

#(5p+3)/(3p^3-3p)xx(9p^3-21p^2+12p)/(5p+3)#

#5p+3# cancels and we end up with:

#(9p^3-21p^2+12p)/(3p^3-3p)#

We can factor both top and bottom:

#(3p(3p^2-7p+4))/(3p(p^2-1))#

#((3p-4)(p-1))/((p+1)(p-1))#

#(3p-4)/(p+1)#