How do you divide #\frac { \frac { 5} { c b ^ { 2} } - \frac { 7} { c ^ { 2} d } } { \frac { 2} { c ^ { 2} d ^ { 2} } + \frac { 9} { c d } }#?

1 Answer
Jun 11, 2017

#=(d(5cd-7b^2))/(b^2(2+9cd))#

Explanation:

This can be written as a division of 2 algebraic fractions:

#color(red)((5/(cb^2) -7/(c^2d))) div color(blue)((2/(c^2d^2)+9/(cd)))#

Find the LCM for each fraction first and find equivalent fractions.
(the process is shown at the bottom)

#=color(red)((5cd-7b^2)/(b^2c^2d)) div color(blue)((2+9cd)/(c^2d^2))#

Multiply by the reciprocal of the second fraction:

#= color(red)(((5cd-7b^2))/(b^2cancel(c^2)d)) xx color(blue)((cancel(c^2)d^2)/((2+9cd))#

#=(d(5cd-7b^2))/(b^2(2+9cd))#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(red)(5/(cb^2) xx (cd)/(cd) = (5cd) /(b^2c^2d)#

#color(red)(7/(c^2d) xx b^2/b^2 = (7b^2)/(b^2c^2d))#

#color(blue)(9/(cd) xx (cd)/(cd) = (9cd)/(c^2d^2)#