How do you divide #\frac { ( x + 1) } { 4} \div \frac { x } { 4} #?

2 Answers
Aug 22, 2017

See a solution process below:

Explanation:

First, we can rewrite the expression as:

#((x + 1)/4)/(x/4)#

Now, we can use this rule for dividing fractions to divide the expression in the problem:

#(color(red)(a)/color(blue)(b))/(color(green)(c)/color(purple)(d)) = (color(red)(a) xx color(purple)(d))/(color(blue)(b) xx color(green)(c))#

#(color(red)((x + 1))/color(blue)(4))/(color(green)(x)/color(purple)(4)) => (color(red)((x + 1)) xx color(purple)(4))/(color(blue)(4) xx color(green)(x)) => (color(red)((x + 1)) xx cancel(color(purple)(4)))/(cancel(color(blue)(4)) xx color(green)(x)) =>#

#(x + 1)/x#

Or

#x/x + 1/x =>#

#1 + 1/x#

Aug 22, 2017

#(x+1)/x#

Explanation:

#(x+1)/4 div x/4#

Dividing is the same as multiplying by the reciprocal.

#(x+1)/cancel4 xx cancel4/x" "larr# cancel

#=(x+1)/x#

This cannot be simplified further.