How do you divide #\frac { x ^ { 2} + 3x + 2} { 3x ^ { 2} + x - 2} \div ( x + 2)#?

2 Answers
Apr 14, 2018

#(3x-2)#

Explanation:

When you are simplifying algebraic fractions, factorise first wherever possible.

#(x^2+3x+2)/(3x^2+x-2) div (x+2)/1#

#((x+2)(x+1))/((3x-2)(x+1)) xx 1/((x+2))" "larr # cancel common factors

#=((x+2)(x+1))/((3x-2)(x+1)) xx 1/((x+2))#

#=(cancel((x+2))cancel((x+1)))/((3x-2)cancel((x+1))) xx 1/cancel((x+2))#

#=(3x-2)#

Apr 14, 2018

Lets begin by factorizing each quadratic trinomial,

#color(red)(x^2+3x+2#

#=> x^2 + x + 2x+ 2#

#=> x(x+1) + 2(x+1)#

#=> color(red)((x+ 2)(x+1)#

#color(magenta)(3x^2+x−2#

#=>3x^2+3x-2x−2#

#=>3x(x+1)-2(x+1)#

#=> color(magenta)((3x-2)(x+1)#

#"Now, according to the question, we need to find,"#

#(color(red)(x^2+3x+2))/(color(magenta)(3x^2+x−2)) xx 1/(x+2)#

#=> color(red)(cancel((x+ 2))cancel((x+1)))/ color(magenta)((3x-2)cancel((x+1)))xx 1/(cancel((x+2))#

#=> 1/(3x-2#